Skip to content

@avatune/hair-color-predictor

Source: packages/hair-color-predictor/README.md

Browser-based hair color prediction using TensorFlow.js. Classifies hair into 4 categories: black, brown, blond, gray.

Tiny model (~110KB) with blazingly fast loading and inference in the browser.

Terminal window
npm install @avatune/hair-color-predictor @tensorflow/tfjs
import { createHairColorPredictor } from '@avatune/hair-color-predictor'
// Uses jsDelivr CDN by default - no setup required!
const predictor = createHairColorPredictor()
await predictor.loadModel()
const result = await predictor.predictFromImage(imageElement)
console.log(result)
// {
// color: 'brown',
// confidence: 0.87,
// probabilities: { black: 0.05, brown: 0.87, blond: 0.06, gray: 0.02 },
// faceDetected: true
// }

By default, models are loaded from jsDelivr CDN (https://cdn.jsdelivr.net/npm/@avatune/hair-color-predictor@1.2.2/dist/model). No setup required!

If you prefer to self-host the model files, copy them from dist/model/ to your public directory:

  • model.json - Model architecture and weights manifest
  • classes.json - Class labels
  • group1-shard1of1.bin - Model weights

Then pass the path to the predictor:

const predictor = createHairColorPredictor('/models/hair-color')
import { copyFileSync, mkdirSync, readdirSync } from 'node:fs'
import { join } from 'node:path'
import { defineConfig } from 'vite'
export default defineConfig({
plugins: [
{
name: 'copy-tfjs-models',
buildStart() {
const srcDir = join(__dirname, 'node_modules', '@avatune', 'hair-color-predictor', 'dist', 'model')
const destDir = join(__dirname, 'public', 'models', 'hair-color')
mkdirSync(destDir, { recursive: true })
copyFileSync(join(srcDir, 'model.json'), join(destDir, 'model.json'))
copyFileSync(join(srcDir, 'classes.json'), join(destDir, 'classes.json'))
const files = readdirSync(srcDir)
for (const file of files) {
if (file.endsWith('.bin')) {
copyFileSync(join(srcDir, file), join(destDir, file))
}
}
console.log('✓ Copied hair-color model to public/models')
},
},
],
})
createHairColorPredictor(modelDir?: string)

Parameters:

  • modelDir (optional) - Path to directory containing model files. Defaults to jsDelivr CDN

Loads the TFJS model and class labels. Call this once before making predictions.

predict(imageTensor: tf.Tensor3D): Promise<HairColorResult>

Section titled “predict(imageTensor: tf.Tensor3D): Promise<HairColorResult>”

Predicts hair color from an image tensor.

Parameters:

  • imageTensor - Normalized RGB image tensor [H, W, 3] with values in range [0, 1]

Returns:

{
color: string // Predicted class: 'black' | 'brown' | 'blond' | 'gray'
confidence: number // Confidence score [0, 1]
probabilities: Record<string, number> // Scores for all classes
}
  • Architecture: MobileNetV2-based CNN
  • Input: 128x128 RGB images
  • Classes: 4 (black, brown, blond, gray)
  • Training: CelebA dataset
  • Accuracy: ~79%
  • Format: TensorFlow.js with uint8 quantization

See LICENSE.md for license information.