Skip to content

@avatune/skin-tone-predictor

Source: packages/skin-tone-predictor/README.md

Browser-based skin tone prediction using TensorFlow.js. Classifies skin tone into 3 categories: dark, medium, light.

Tiny model (~110KB) with blazingly fast loading and inference in the browser.

Terminal window
npm install @avatune/skin-tone-predictor @tensorflow/tfjs
import { createSkinTonePredictor } from '@avatune/skin-tone-predictor'
// Uses jsDelivr CDN by default - no setup required!
const predictor = createSkinTonePredictor()
await predictor.loadModel()
const result = await predictor.predictFromImage(imageElement)
console.log(result)
// {
// tone: 'medium',
// confidence: 0.84,
// probabilities: { dark: 0.08, medium: 0.84, light: 0.06 },
// faceDetected: true
// }

By default, models are loaded from jsDelivr CDN (https://cdn.jsdelivr.net/npm/@avatune/skin-tone-predictor@1.2.2/dist/model). No setup required!

If you prefer to self-host the model files, copy them from dist/model/ to your public directory:

  • model.json - Model architecture and weights manifest
  • classes.json - Class labels
  • group1-shard1of1.bin - Model weights

Then pass the path to the predictor:

const predictor = createSkinTonePredictor('/models/skin-tone')
import { copyFileSync, mkdirSync, readdirSync } from 'node:fs'
import { join } from 'node:path'
import { defineConfig } from 'vite'
export default defineConfig({
plugins: [
{
name: 'copy-tfjs-models',
buildStart() {
const srcDir = join(__dirname, 'node_modules', '@avatune', 'skin-tone-predictor', 'dist', 'model')
const destDir = join(__dirname, 'public', 'models', 'skin-tone')
mkdirSync(destDir, { recursive: true })
copyFileSync(join(srcDir, 'model.json'), join(destDir, 'model.json'))
copyFileSync(join(srcDir, 'classes.json'), join(destDir, 'classes.json'))
const files = readdirSync(srcDir)
for (const file of files) {
if (file.endsWith('.bin')) {
copyFileSync(join(srcDir, file), join(destDir, file))
}
}
console.log('✓ Copied skin-tone model to public/models')
},
},
],
})
createSkinTonePredictor(modelDir?: string)

Parameters:

  • modelDir (optional) - Path to directory containing model files. Defaults to jsDelivr CDN

Loads the TFJS model and class labels. Call this once before making predictions.

predict(imageTensor: tf.Tensor3D): Promise<SkinToneResult>

Section titled “predict(imageTensor: tf.Tensor3D): Promise<SkinToneResult>”

Predicts skin tone from an image tensor.

Parameters:

  • imageTensor - Normalized RGB image tensor [H, W, 3] with values in range [0, 1]

Returns:

{
tone: string // Predicted class: 'dark' | 'medium' | 'light'
confidence: number // Confidence score [0, 1]
probabilities: Record<string, number> // Scores for all classes
}
  • Architecture: MobileNetV2-based CNN
  • Input: 128x128 RGB images
  • Classes: 3 (dark, medium, light)
  • Training: FairFace dataset
  • Accuracy: ~68%
  • Model size: ~110KB (uint8 quantized)
  • Format: TensorFlow.js with uint8 quantization

See LICENSE.md for license information.